
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 2, February (2018)

ISSN: 2395-5317 ©EverScience Publications 35

High Secure Web Service to Resolve Different Web

Vulnerabilities

Girisan E K

Assistant Professor, Department of Computer Science, Sree Narayana Guru College, K.G Chavadi, Coimbatore,

Tamil Nadu, India

Savitha T

M.Phil Scholar, Department of Computer Science, Sree Narayana Guru College,K.G Chavadi, Coimbatore, Tamil

Nadu, India

Abstract – Web applications are one of the most widespread

platforms for information and services delivery over Internet

today. As they are increasingly used for critical services, web

applications become a popular and valuable target for security

attacks. Although a large body of techniques has been developed

to fortify web applications and mitigate the attacks toward web

applications, there is little effort devoted to drawing connections

among these techniques and building a big picture of web

application security research. In this paper a security scheme is

proposed to protect the web application from Cross-Site scripting

and injection attacks. The proposal also developed with the aim of

regulating the existing techniques after detailed analysis. The

system specifically considered four types of attack such as Cross-

Site scripting, Code, data and SQL injection attacks. To improve

the web application security, the proposed system utilizes the

improved honey pot mechanism, Attack Threshold calculation-

token generation and web service based authentication

mechanisms. The proposed work detects attacks using policy rules

and expressions.

Index Terms – Web Security, Cross-Site scripting, SQL Injection

Attacks, web service, Authentication.

1. INTRODUCTION

Web application has become one of the most important

communication channels between various kinds of service

providers and clients .The web application vulnerabilities

found in different web applications has increased tremendously

in the recent trend[1]. To understand web application security,

the threats, the vulnerabilities, and attacks have to be defined.

A threat is any potential malicious occurrence that could harm

an asset. Vulnerability is a security weakness which makes a

threat to spread several types of attacks. This may happen due

to poor designing, inappropriate and insecure coding

techniques [2][3]. Securing a web application is very difficult.

Because some attacks rely on user input that is not validated by

the web application perfectly. The authentication attacks, Cross

Site Scripting and SQL injection vulnerabilities are in the top

list [4]. The earlier work on Cross-site Scripting (XSS) and

some sql injection detection need to processed at the server

side, and these vulnerabilities cause different types of other

attacks in the web applications[5]. So, the web vulnerabilities

should be verified priory and effectively. Hence, Web

application security is the need of the hour for today’s web

medium to provide secure and seamless services in an

enterprise web application environment. There are many

reasons for security flaws to work their way into web

applications, such as security is very rarely considered during

the functional requirements phase [6].

2. PROBLEM DEFINITION

As technology development increases, equally web

vulnerabilities also increases. Many works introduced and

provided vulnerability detection mechanisms, while some

others provide both detection and prevention mechanisms [7].

However, the application has several issues like performance

oriented, more vulnerability are not handled together etc., and

Websites affects the cross site scripting, injection attacks which

is more vulnerable. Web security system should effectively

find, track the vulnerabilities without any performance issues

[8]. Several web authentication systems help to track the

unauthorized access in the web. However, the high interaction

and network resources are need to deploy. Input validation

mechanisms are widely used in the earlier work against

injection and XSS attacks. Because those attacks occurs due to

lack of inspection or insufficient inspection on the input

provided by the clients. The two most common input

validation based attacks are SQL injection attacks and Cross

site scripting attacks [9]. So this server side validation and

Attack detection may create server overload problem and

which decrease the performance of the server [10].

3. PROPOSED SYSTEM

Web applications are one of the most widespread platforms for

information and services delivery over Internet today. In the

proposed system a security scheme is proposed to protect the

web application from cross site scripting and injection attacks,

with the aim of regulating the existing techniques into detailed

analysis that promotes future investigation. The proposed

system specifically considered multiple attacks such as Cross

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 2, February (2018)

ISSN: 2395-5317 ©EverScience Publications 36

Site scripting, Injection, Broken authentication and session

management attacks. To improve the web application security,

the system has the following contributions.

A. Contributions of the Proposed System

The proposed system developed a high security email server

with the three types of research contributions. Using the

following techniques and tools, the proposed system

overcomes the web application vulnerabilities. To improve the

web application security, the system has the following

contributions.

 To effectively detect, defend and track multiple types of

attacks, a new Security Service Architecture (SSA) is

proposed and deployed in a separate service oriented

method.

 The SSA includes the Attack Threshold calculation and

authorized token generation schemes to verify the client.

These verification and authentication schemes are

deployed at the web service to reduce the load of the

server.

 The proposed work utilizes the Improved Honey Pot

(IHP) Mechanism to track the attacker activity;

additionally the proposed work performs user input

validation to defend the unexpected input, which is more

vulnerable for many attacks. This has been performed

using security policy and expressions matching.

 The proposed system is explained with various sub

sections in this chapter, this initially explains the

architecture of the proposed system and then attack

scenario is explained with the proposed SSA scheme.

B. Proposed System Architecture

Figure 1.0 the overall process involved with the Proposed

System

The solution proposed is modularized, configured, and

developed in .Net, XML and web services. This approach is

evaluated in a web application developed in ASP.net deployed

in email server application and is found effective as it provides

the flexibility to be used across languages with a very minimal

configuration to prevent XSS, injection and password

authentication.

The overall architecture of the proposed system is shown in

Figure 1.0. The proposed system performed in an email

application, which has been created with multi-tier

architecture. The proposed system has segmented into several

phases such as service initialization with converter, input

validation, request passing, user validation, token generation,

session initialization, authentication, authentication monitoring

and IHP implementation for reporting the malicious behavior.

4. PROPOSED METHODOLOGY

Applications are constantly probed for vulnerability and when

found to be vulnerable, are attacked with sustained

belligerence. Literature shows that the attacks on web

applications are increased, since the attacks are launched on

port 8080, which remains open in every situation. Secure

Socket Layer (SSL) and firewalls are incompetent against

application level attacks as it cannot prevent the port 80 attacks.

These attacks can bring down the web application server and

can also provide access to the internal databases containing

sensitive information like their passwords, phone numbers,

financial information’s and personal information. Email

applications are developed using number of languages and

deployed in different operating systems. This is due to the

different features that web application provides to its users. If

the application is very simple and does not require up time of

the server, then this will be developed using HTML. But email

like web applications need to consider various interfaces that it

need to interact, security and availability of various features in

the application.

A) Service Initialization and Validation

The main part of the solution is the application that generates

the XML Schema based on the input parameters and constraints

at the web application to the web service call. The solution

comprises of three major components such as web service call,

converter, validates and policy generator application. The

converter is the interface between the web application and

users. This can be an executable binary or the interface can also

be developed in the same language.

B) Converter Section

The converter section is the interface section between the

application and the user. The “https” requests are configured to

send the requests to the converter that converts the request

object to a name value XML pair. Then this XML object is

passed on to the validate section. The outcome of the process

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 2, February (2018)

ISSN: 2395-5317 ©EverScience Publications 37

is the status of the vulnerability of the input that decides the

next action for the converter. If the input is found valid,

converter passes this input to the web application. Otherwise it

throws an exception and takes the programmed action, if the

request is found invalid.

C) Validate section

In the proposed system, the XSS and SQL verification are

performed by validation sections. Here the input controls are

generated by the schema generator and stored in the repository.

The schema generator functionality is explained in the

following schema generator application section. Validate

section receives the XML request object from the converter and

retrieves the corresponding schema for the request. The

Validate function verifies the input mentioned as the name

value pair in the XML object and checks for its vulnerability

by mapping the schema constraints. The outcome of the

Validate section is sent as the input to the converter section that

decides further action for the input.

i. Input Data Form

Input data form gets all input of the web page to generate policy

document for that web page. The input parameters of the web

page are captured and then it will be passed to the web service

ii. Input Data Element class

Each input control in the web page, which contains the data

type, length; input format, special characters allowed and mark

up allowed attributes are different. Hence, the regular

expressions and the constraints generated by the policy

generator for each row are also different. Each row and its

associated attributes like data type, length, etc for each input

control is represented as an element in the policy language.

Hence the input data element class mentioned here is used to

generate the elements in a policy document. Once the input is

given and done button is clicked in the input data from each

row in the data view grid is mapped to an Input Data Element

class instance in a loop and this InputDataElement is passed to

the Scheme Generator class instance for generation of policy

element in a policy document.

iii. Policy Generator

The next step in the proposed system is generating the polices

using Policy generator approach is based on regular expression

and hence while generating policy, the constraints are

generated automatically and included in the policy that is used

by the validator function to validate the input for malicious

patterns. There are 7 methods included in the

CreatePolicyComponentForRootElement(),

CreatePolicyComponentForMessageElement (), Save policy,

Create Type for String With markup (), CreateBaseTypeFor

string (), Remove Spaces (), CreateTypeForNumeric ()

iv. Policy and Schema generation section

The XML schema document is created using the .NET 4.5

System.Xml.Schema namespace sections. This is the core part

of the proposed architecture and schema generator application

generates the schema for each page based on the input provided

by the developer; the generated schema is stored in a file

system or in a database. When the Validate receives the XML

object for which the XSS vulnerability is to be assessed, it

retrieves the corresponding schema of the web page from the

repository and validates the input based on the rules stated in

the schema. The schema generation process comprises of an

input data form, input data element class and a schema

generator.

The IHP technique is deployed to handle the broken

authentication issues, which can be performed using the

session hijacking and various types of password authentication

vulnerabilities.

The proposed SSA architecture contains the tracking portion,

which handles the authentication related issues in the email

server application. This navigates the user who tried wrong

Algorithm: SSA

Input: Login details and URL

Output: Container and token ID.

Step 1: Parse the user login Li data and pass to web

service Ws.

Step 2: Ws receive user login request Li and moves

to a container C.

Step 3: Create token Tk for Li in C

Step 4: for every Tk in C do verify input and

validateif Li reserved SQL Keyword Move Tk to

Rejected List RL;

Step 5: Parse the user input Li data into Tk; While

(not empty of token) Check if token• reserved

JavaScript keyword Set the flag1 to continue; Else Set

the flag1 to deny;

Step 6: Extract the URL from HTTP; Parse the URL

into Tk; While (not empty of Tk) Check if (URL =

Benign using the signature check) Set the flag to

continue; Else Set the flag to deny;

Step 7: Send the Tk, flag1 and original Web request

to Web application Server;

Step 8: return Tk and validation report

The algorithm initially gets the user requested URL

and parse for the validation. Finally returns the

generated authentication token and flag value.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 2, February (2018)

ISSN: 2395-5317 ©EverScience Publications 38

password more than a specific threshold. The threshold limit

can be detected from the user log, which is stored in a web log.

Based on that the user’s remote screens are captured and that

will be sending to the legitimate users.

5. IMPLEMENTATION AND RESULTS

The experiments are performed on an Intel Dual Core with a

RAM capacity 2GB. The algorithms are implemented in

ASP.Net for email server site creation and C#.NET as coding

language and are run under Windows family. The system has

successfully implemented using Visual studio.Net and C#.net

as code program. The security architecture of the proposed

system is carried out on the email server application, which

needs more security in the current scenario.

Table1.0Description about implementation parameters

Attacks Count Description

Total XSS

attack samples

used

10 The system collects 10

user information’s

along with their fake

XSS related scripts.

Total SQL

samples

5 The proposed system

gathered 5 sql queries

to evaluate the

proposed system

performance.

The implementation was performed by the real world XSS,

injection and authentication based attack datasets. Due to the

security and insufficient dataset of real email server website a

new website has been created for the evaluation. And then the

system constructed a new scheme to perform the SSA process.

The followings are the details about the implementation

process and parameters. The proposed system experimented

with several numbers of users to evaluate the proposed system

outcome. All the above parameters have been created from the

email server website, which is developed for the

implementation. The system implements the session feature

type and its description, based on this features the system will

authenticate users. This also restricts user if any feature

mismatches.

5.1 Performance of proposed system

In this section measure the performance of the each iteration

then measure the results the overall time of the SSA. Policy

matching accuracy is evaluated by comparing with different set

of policies. The table 2.0 shows the policy extraction time at

the time of different inputs and different attack policies

Table 2.0: Performance Measurement

In this section, through statistic analysis, the system finds the

average time taken for each process in SSA.

Figur 2.0 Time Comparison to Perform Different Security

Process

samples XSS Injection

attacks

Session/ password

authentication

1 3.5 2.3 1.7

2 5.5 4.5 2.9

3 8.4 7.1 3.4

4 12 11 9.6

5 23 20 14.4

Algorithm: Improved Honey Pot(IHP)

Input: user authentication log, threshold T

Output: determines the type of user (attacker or

legitimate) and gives appropriate page and

monitors if the user as attacker.

Step 1: Parse the user login Li data and pass to

web service Ws. And perform SAA

Step2: if the Li and flag value is 0, then add the

count to the Failure Count (FC).

Step3: if (FC>T) then

Step4: move to the fake page Fp

Step 5: validate and provide appropriate page

Vp. Session generation and signature processing

for the selected token and session.

Step 6: update token and session

Step 7: end

Dynamic fake session creation for the attackers

will be performed by the SSA architecture, and

that will detect the attacker activity passively.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 2, February (2018)

ISSN: 2395-5317 ©EverScience Publications 39

This initially calculates total time consumption for XSS

verification, SQL injection validation and session generation.

This shows the impact of the new security system, which needs

less time. The accuracy of the proposed model is analyzed with

the accuracy measures. From the above figure 2.0 the time

consumption at each stage of SSA is compared. The user list is

specified from 1 to 5. For each process, the time calculated and

finally the system provides the overall time taken by the SSA.

This shows for 5 users the system takes 57.4 mille second time.

6. CONCLUSION

A new improved SSA architecture based on web service model

for email server application proposed takes care of the all

possible risks of hacking. Redefining the proposed security

architecture and including Password log history in attack

detection have reduced the risks encountered by the earlier

authorization techniques. And in case of any attacker tries to

login, then the fake page will be navigated. The model is not

prone to contour analysis since parameter analysis takes place

in a secured internal environment of mail server application.

The proposed authorization model will save the email server

application from the hands of hackers.

The Proposed system developed a security service Architecture

to prevent SQL Injection, XSS vulnerabilities and

authentication attacks for the web applications. This has

deployed a web service to reduce the load of the server. The

proposed system achieved high accuracy in attack detection

and prevented the application from various attacks. The

proposed system not only prevents the attack, it also tracks the

authentication failures and other vulnerabilities using the low

interactive honey pot mechanisms.

REFERENCES

[1] Shrivastava, Ankit, SantoshChoudhary, and Ashish Kumar. "XSS
vulnerability assessment and prevention in web application." Next

Generation Computing Technologies (NGCT), 2016 2nd International

Conference on. IEEE, 2016.
[2] Sonewar, Piyush A., and Nalini A. Mhetre. "A novel approach for web

application threats, the vulnerabilities security." Pervasive Computing

(ICPC), 2015 International Conference on. IEEE, 2015.
[3] Gupta, Aditi, JavidHabibi, Michael S. Kirkpatrick, and Elisa Bertino. "

Exploitation of cross-site scripting (XSS) vulnerability on real world web

applications and its defense." IEEE Transactions on Dependable and
Secure Computing 12, no. 3 (2015): 326-337.

[4] Halfond, William G., Jeremy Viegas, and Alessandro Orso. "A

classification of SQL-injection attacks and countermeasures." Proceedings
of the IEEE International Symposium on Secure Software Engineering.

Vol. 1. IEEE, 2006.

[5] Sonewar, Piyush A., and Sonali D. Thosar. "Detection of SQL injection
and XSS attacks in three tier web applications." Computing

Communication Control and automation (ICCUBEA), 2016 International

Conference on. IEEE, 2016.
[6] Narayanan, Sandeep Nair, AlwynRoshanPais, and Radhesh Mohandas.

"Detection and Prevention of security threats In Web application using

Semantic Equivalence." Computer Networks and Intelligent Computing.
Springer, Berlin, Heidelberg, 2011. 103-112.

[7] Sonewar, Piyush A., and Sonali D. Thosar. "Detection of SQL injection

and XSS attacks in three tier web applications." Computing
Communication Control and automation (ICCUBEA), 2016 International

Conference on. IEEE, 2016.

[8] Huang, Yao-Wen, et al. "Securing web application code by static analysis
and runtime protection." Proceedings of the 13th international conference

on World Wide Web. ACM, 2004.

[9] Sonewar, Piyush A., and Nalini A. Mhetre. "A novel approach for
detection of SQL injection and cross site scripting attacks." Pervasive

Computing (ICPC), 2015 International Conference on. IEEE, 2015.

[10] Mobasher, Bamshad, et al. "Effective server overload problem for shilling

item-based collaborative filtering systems." Proceedings of the 2005

WebKDDWorkshop, held in conjuction with ACM SIGKDD. Vol. 2005.

2005.

